Soil and Glass

Come in and get your notebooks out. We have notes today!
What is Soil?

• The top layer of Earth’s crust where most plants grow
• It contains minerals, decaying organisms, water, and air
• It is divided into horizons, which are layers parallel to the Earth’s surface in which the soil forms
Horizons
Horizons

- **O Horizon**: also called *humus*, it is made up of decaying organic matter
• A Horizon:
 also called *topsoil*, the soil is dark in color; it is made up of humus and minerals; seed sprout and plant roots grow in this layer
Horizons (cont.)

- **E Horizon:**
 light in color, it is made up of sand and silt

- **B Horizon:**
 also called *subsoil*; it is a mixture of clay and minerals
Horizons (cont.)

• **C Horizon:**
 made up of partially broken rock; no plant roots or humus are found in this layer

• **R Horizon:**
 layer made up of solid rock
Soil Texture

- Describes the size of the mineral particles that make up soil
- There are 3 types of grain sizes:
 - Sand
 - Silt
 - Clay
- Sand describes the largest size and clay is the smallest
Sand

- Formed by the action of wind and water (*weathering*)
- It has a gritty feel
- Found in deserts, beaches, and riverbeds
- Contains large visible particles and loses water quickly
Sand (cont.)

• Sand from different locations contain different combinations of minerals
• The most common mineral in sand is *quartz*
• There are four basic sources of sand:
 • *Continental sand*: made up of quartz, micas, feldspars and dark-colored minerals
Sand (cont.)

- **Volcanic sand**: usually dark in color; found in mid-ocean and hot spot volcanoes; has little or no quartz
- **Skeletal (Biogenic) sand**: made of the remains or marine organisms; has a high amount of calcium carbonate
Sand (cont.)

- **Precipitate sand**: formed when the water mixed with minerals evaporates and the minerals precipitate out; calcium carbonate will precipitate out of seawater forming layers; the layers eventually form small, round structures called **oolites**
Silt

- Composed of medium-sized particles
- Has a crumbly, slippery feel
- Found in sediment in riverbeds
- Has good drainage
Clay

- Composed of small particles adhering to each other
- Has a sticky feel
- Clumps and has poor drainage
Soil Subcategories

- **Loam**: made up of sand, silt and clay
- **Peat**: has over 20% organic material
- **Chalk**: alkaline soil that contains various-sized pieces of a solid, but soft, rock called *chalk*
Soil and Glass

Come in and get your notebooks out. We have notes today!
Soil Profile

• Several tests and observations are done to create a soil profile including:
 • Color
 • Texture
 • Odor
 • Presence of animal or plant debris
 • Density
 • pH
 • Nitrogen content
 • Phosphorus content
Mineral Composition of Sand

• Sand may contain one of more minerals
• Quartz—the most common mineral in sand
• Crystal—sand with one mineral
• Rounded or angular sand depends on the amount of weathering and mineral composition
Chemistry of the Soil

- Acidic or basic (alkaline)—the pH scale
- What affects the pH level?
 - Materials that make up a soil
 - Rainfall
 - Pollution
 - Fertilizer
- The pH value of a soil sample helps scientists match it to other samples

<table>
<thead>
<tr>
<th>Strong acid</th>
<th>weak acid</th>
<th>neutral</th>
<th>weak base</th>
<th>strong base</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH value</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Some common examples include:</td>
<td>pH value (approximate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidic substances</td>
<td>Basic substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery acid</td>
<td>1</td>
<td>Baking soda, sea water</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Lemon juice</td>
<td>2.5</td>
<td>Milk of Magnesia</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Orange juice</td>
<td>3.0</td>
<td>Detergents</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Vinegar</td>
<td>3.5</td>
<td>Ammonia water</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>Breads, pasta</td>
<td>5.0</td>
<td>Bleaches, oven cleaner</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Rain (not acid)</td>
<td>5.5</td>
<td>Lye (drain cleaner)</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sand—Weathering

- Breaking down rock into sand with **wind** and **water** forces
- Wind is a faster agent—grains strike each other directly
- Water is a slower agent—water acts as a buffer
Density

• All materials have a specific density and as such, substances can be identified by their density

• Density is defined as the mass of a substance per unit volume of:
 \[
 \text{density} = \frac{\text{mass}}{\text{volume}}
 \]

• Objects will float at the level of their density

• Based on this principle, density columns can be used to find the density of an object
Density Columns

- A density column is created by placing very dense liquids on the bottom of a column and “floating” less dense liquids on top of the more dense liquids.
- An object dropped into the column will sink to the place where its density just equals the density of the surrounding liquid.
- An object that sinks completely is more dense than the most dense liquid in the column.
- An object that floats on the surface is less dense than the least dense liquid in the column.
Nitrogen and Phosphorus

• Nitrogen is important in soil because plants use it to make chlorophyll, the green pigment needed for photosynthesis

• Phosphorus helps plants grow strong and helps in the production of flowers and fruit; phosphorus is especially important for the root part of the plant
Soil and Glass

Come in and get your notebooks out. We have notes today!
Collecting Evidence

• Photograph and sketch the crime scene and note where the soil samples were obtained
• Only about one cup of the top layer of soil needs to be collected
• Do not remove soil stuck to shoes, clothing or tools; package these separately in appropriate containers
• Carefully remove soil from vehicles and package these soil samples separately
• Collect additional soil samples from the four compass points within a few feet of the crime scene and another set 20-25 feet from the crime scene
Soil Collection — Chain of Custody

A chain of custody log is essential

1. Bag, identify, seal, and sign
2. Each subsequent user opens bag on a “new” side
3. Return contents to original bag evidence bag, seal it in another bag, and sign the evidence log
Soil Examination

• Unique soil samples provide better evidence
• Layers of soil or sand taken from shoes or the wheels of vehicles can show a suspect was present at a series of locations
Soil Examination

• Macroscopic analysis
 • Size, shape and color of soil
 • Amount of plant and animal material
 • Particle size

• X-ray diffraction
 • X-rays deflected off a soil sample indicate a pattern unique to each mineral present

• Other tools test density and moisture content